MakeItFrom.com
Menu (ESC)

C92900 Bronze vs. ASTM A182 Grade F5

C92900 bronze belongs to the copper alloys classification, while ASTM A182 grade F5 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C92900 bronze and the bottom bar is ASTM A182 grade F5.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 84
180
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 9.1
22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
74
Tensile Strength: Ultimate (UTS), MPa 350
540
Tensile Strength: Yield (Proof), MPa 190
310

Thermal Properties

Latent Heat of Fusion, J/g 190
260
Maximum Temperature: Mechanical, °C 170
510
Melting Completion (Liquidus), °C 1030
1460
Melting Onset (Solidus), °C 860
1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 58
40
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 35
4.5
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.8
1.8
Embodied Energy, MJ/kg 61
24
Embodied Water, L/kg 390
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
100
Resilience: Unit (Modulus of Resilience), kJ/m3 170
260
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11
19
Strength to Weight: Bending, points 13
19
Thermal Diffusivity, mm2/s 18
11
Thermal Shock Resistance, points 13
15

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
4.0 to 6.0
Copper (Cu), % 82 to 86
0
Iron (Fe), % 0 to 0.2
91.5 to 95.3
Lead (Pb), % 2.0 to 3.2
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.44 to 0.65
Nickel (Ni), % 2.8 to 4.0
0 to 0.5
Phosphorus (P), % 0 to 1.5
0 to 0.030
Silicon (Si), % 0 to 0.0050
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.7
0