MakeItFrom.com
Menu (ESC)

C92900 Bronze vs. ASTM A387 Grade 5 Steel

C92900 bronze belongs to the copper alloys classification, while ASTM A387 grade 5 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C92900 bronze and the bottom bar is ASTM A387 grade 5 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 84
150 to 180
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 9.1
20 to 21
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
74
Tensile Strength: Ultimate (UTS), MPa 350
500 to 600
Tensile Strength: Yield (Proof), MPa 190
230 to 350

Thermal Properties

Latent Heat of Fusion, J/g 190
260
Maximum Temperature: Mechanical, °C 170
510
Melting Completion (Liquidus), °C 1030
1460
Melting Onset (Solidus), °C 860
1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 58
40
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 35
4.3
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.8
1.7
Embodied Energy, MJ/kg 61
23
Embodied Water, L/kg 390
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
83 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 170
140 to 320
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11
18 to 21
Strength to Weight: Bending, points 13
18 to 20
Thermal Diffusivity, mm2/s 18
11
Thermal Shock Resistance, points 13
14 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
4.0 to 6.0
Copper (Cu), % 82 to 86
0
Iron (Fe), % 0 to 0.2
92.1 to 95.3
Lead (Pb), % 2.0 to 3.2
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 2.8 to 4.0
0
Phosphorus (P), % 0 to 1.5
0 to 0.025
Silicon (Si), % 0 to 0.0050
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.025
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.7
0