MakeItFrom.com
Menu (ESC)

C92900 Bronze vs. ASTM Grade HK Steel

C92900 bronze belongs to the copper alloys classification, while ASTM grade HK steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C92900 bronze and the bottom bar is ASTM grade HK steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 84
150
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 9.1
11
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 350
500
Tensile Strength: Yield (Proof), MPa 190
270

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 1030
1400
Melting Onset (Solidus), °C 860
1350
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 58
15
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 35
25
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.8
4.4
Embodied Energy, MJ/kg 61
63
Embodied Water, L/kg 390
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
48
Resilience: Unit (Modulus of Resilience), kJ/m3 170
190
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11
18
Strength to Weight: Bending, points 13
18
Thermal Diffusivity, mm2/s 18
3.9
Thermal Shock Resistance, points 13
11

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0.2 to 0.6
Chromium (Cr), % 0
24 to 28
Copper (Cu), % 82 to 86
0
Iron (Fe), % 0 to 0.2
44.8 to 57.8
Lead (Pb), % 2.0 to 3.2
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 2.8 to 4.0
18 to 22
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 2.0
Sulfur (S), % 0 to 0.050
0 to 0.040
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.7
0