MakeItFrom.com
Menu (ESC)

C92900 Bronze vs. EN 1.4903 Stainless Steel

C92900 bronze belongs to the copper alloys classification, while EN 1.4903 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C92900 bronze and the bottom bar is EN 1.4903 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 9.1
20 to 21
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
75
Tensile Strength: Ultimate (UTS), MPa 350
670 to 680
Tensile Strength: Yield (Proof), MPa 190
500

Thermal Properties

Latent Heat of Fusion, J/g 190
270
Maximum Temperature: Mechanical, °C 170
650
Melting Completion (Liquidus), °C 1030
1460
Melting Onset (Solidus), °C 860
1420
Specific Heat Capacity, J/kg-K 370
470
Thermal Conductivity, W/m-K 58
26
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
4.0

Otherwise Unclassified Properties

Base Metal Price, % relative 35
7.0
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.8
2.6
Embodied Energy, MJ/kg 61
36
Embodied Water, L/kg 390
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 170
650
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11
24
Strength to Weight: Bending, points 13
22
Thermal Diffusivity, mm2/s 18
7.0
Thermal Shock Resistance, points 13
23

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0 to 0.040
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0.080 to 0.12
Chromium (Cr), % 0
8.0 to 9.5
Copper (Cu), % 82 to 86
0 to 0.3
Iron (Fe), % 0 to 0.2
87.1 to 90.5
Lead (Pb), % 2.0 to 3.2
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 2.8 to 4.0
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 1.5
0 to 0.025
Silicon (Si), % 0 to 0.0050
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.015
Tin (Sn), % 9.0 to 11
0
Vanadium (V), % 0
0.18 to 0.25
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.7
0