MakeItFrom.com
Menu (ESC)

C92900 Bronze vs. S32003 Stainless Steel

C92900 bronze belongs to the copper alloys classification, while S32003 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C92900 bronze and the bottom bar is S32003 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 84
250
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 9.1
28
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 350
730
Tensile Strength: Yield (Proof), MPa 190
510

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 170
1010
Melting Completion (Liquidus), °C 1030
1440
Melting Onset (Solidus), °C 860
1400
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 58
15
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 35
14
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.8
3.0
Embodied Energy, MJ/kg 61
42
Embodied Water, L/kg 390
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
180
Resilience: Unit (Modulus of Resilience), kJ/m3 170
660
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11
26
Strength to Weight: Bending, points 13
23
Thermal Diffusivity, mm2/s 18
4.0
Thermal Shock Resistance, points 13
21

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19.5 to 22.5
Copper (Cu), % 82 to 86
0
Iron (Fe), % 0 to 0.2
68.2 to 75.9
Lead (Pb), % 2.0 to 3.2
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 2.8 to 4.0
3.0 to 4.0
Nitrogen (N), % 0
0.14 to 0.2
Phosphorus (P), % 0 to 1.5
0 to 0.030
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.020
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.7
0