MakeItFrom.com
Menu (ESC)

C92900 Bronze vs. S45000 Stainless Steel

C92900 bronze belongs to the copper alloys classification, while S45000 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C92900 bronze and the bottom bar is S45000 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 84
280 to 410
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 9.1
6.8 to 14
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 350
980 to 1410
Tensile Strength: Yield (Proof), MPa 190
580 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 170
840
Melting Completion (Liquidus), °C 1030
1440
Melting Onset (Solidus), °C 860
1390
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 58
17
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 35
13
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.8
2.8
Embodied Energy, MJ/kg 61
39
Embodied Water, L/kg 390
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
94 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 170
850 to 4400
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11
35 to 50
Strength to Weight: Bending, points 13
28 to 36
Thermal Diffusivity, mm2/s 18
4.5
Thermal Shock Resistance, points 13
33 to 47

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 82 to 86
1.3 to 1.8
Iron (Fe), % 0 to 0.2
72.1 to 79.3
Lead (Pb), % 2.0 to 3.2
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 2.8 to 4.0
5.0 to 7.0
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.7
0