MakeItFrom.com
Menu (ESC)

C93200 Bronze vs. AISI 410 Stainless Steel

C93200 bronze belongs to the copper alloys classification, while AISI 410 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C93200 bronze and the bottom bar is AISI 410 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 20
16 to 22
Fatigue Strength, MPa 110
190 to 350
Poisson's Ratio 0.35
0.28
Shear Modulus, GPa 38
76
Tensile Strength: Ultimate (UTS), MPa 240
520 to 770
Tensile Strength: Yield (Proof), MPa 130
290 to 580

Thermal Properties

Latent Heat of Fusion, J/g 180
270
Maximum Temperature: Mechanical, °C 160
710
Melting Completion (Liquidus), °C 980
1530
Melting Onset (Solidus), °C 850
1480
Specific Heat Capacity, J/kg-K 360
480
Thermal Conductivity, W/m-K 59
30
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 12
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 32
7.0
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 3.2
1.9
Embodied Energy, MJ/kg 52
27
Embodied Water, L/kg 370
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
97 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 76
210 to 860
Stiffness to Weight: Axial, points 6.5
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.5
19 to 28
Strength to Weight: Bending, points 9.7
19 to 24
Thermal Diffusivity, mm2/s 18
8.1
Thermal Shock Resistance, points 9.3
18 to 26

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.35
0
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
11.5 to 13.5
Copper (Cu), % 81 to 85
0
Iron (Fe), % 0 to 0.2
83.5 to 88.4
Lead (Pb), % 6.0 to 8.0
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 1.0
0 to 0.75
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.080
0 to 0.030
Tin (Sn), % 6.3 to 7.5
0
Zinc (Zn), % 2.0 to 4.0
0
Residuals, % 0 to 1.0
0