MakeItFrom.com
Menu (ESC)

C93200 Bronze vs. EN 1.4547 Stainless Steel

C93200 bronze belongs to the copper alloys classification, while EN 1.4547 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C93200 bronze and the bottom bar is EN 1.4547 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 20
39
Fatigue Strength, MPa 110
290
Poisson's Ratio 0.35
0.28
Shear Modulus, GPa 38
80
Tensile Strength: Ultimate (UTS), MPa 240
750
Tensile Strength: Yield (Proof), MPa 130
340

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 160
1090
Melting Completion (Liquidus), °C 980
1470
Melting Onset (Solidus), °C 850
1420
Specific Heat Capacity, J/kg-K 360
460
Thermal Conductivity, W/m-K 59
14
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 32
28
Density, g/cm3 8.8
8.0
Embodied Carbon, kg CO2/kg material 3.2
5.6
Embodied Energy, MJ/kg 52
75
Embodied Water, L/kg 370
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
240
Resilience: Unit (Modulus of Resilience), kJ/m3 76
290
Stiffness to Weight: Axial, points 6.5
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 7.5
26
Strength to Weight: Bending, points 9.7
23
Thermal Diffusivity, mm2/s 18
3.8
Thermal Shock Resistance, points 9.3
16

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.35
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
19.5 to 20.5
Copper (Cu), % 81 to 85
0.5 to 1.0
Iron (Fe), % 0 to 0.2
51 to 56.3
Lead (Pb), % 6.0 to 8.0
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0 to 1.0
17.5 to 18.5
Nitrogen (N), % 0
0.18 to 0.25
Phosphorus (P), % 0 to 1.5
0 to 0.030
Silicon (Si), % 0 to 0.0050
0 to 0.7
Sulfur (S), % 0 to 0.080
0 to 0.010
Tin (Sn), % 6.3 to 7.5
0
Zinc (Zn), % 2.0 to 4.0
0
Residuals, % 0 to 1.0
0