MakeItFrom.com
Menu (ESC)

C93200 Bronze vs. EN 1.7362 Steel

C93200 bronze belongs to the copper alloys classification, while EN 1.7362 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C93200 bronze and the bottom bar is EN 1.7362 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 20
21 to 22
Fatigue Strength, MPa 110
140 to 250
Poisson's Ratio 0.35
0.29
Shear Modulus, GPa 38
74
Tensile Strength: Ultimate (UTS), MPa 240
510 to 600
Tensile Strength: Yield (Proof), MPa 130
200 to 360

Thermal Properties

Latent Heat of Fusion, J/g 180
260
Maximum Temperature: Mechanical, °C 160
510
Melting Completion (Liquidus), °C 980
1460
Melting Onset (Solidus), °C 850
1420
Specific Heat Capacity, J/kg-K 360
470
Thermal Conductivity, W/m-K 59
40
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 12
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 32
4.5
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.2
1.8
Embodied Energy, MJ/kg 52
23
Embodied Water, L/kg 370
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
90 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 76
100 to 340
Stiffness to Weight: Axial, points 6.5
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.5
18 to 21
Strength to Weight: Bending, points 9.7
18 to 20
Thermal Diffusivity, mm2/s 18
11
Thermal Shock Resistance, points 9.3
14 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.35
0
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0
4.0 to 6.0
Copper (Cu), % 81 to 85
0 to 0.3
Iron (Fe), % 0 to 0.2
91.5 to 95.2
Lead (Pb), % 6.0 to 8.0
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0 to 1.0
0 to 0.3
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 1.5
0 to 0.020
Silicon (Si), % 0 to 0.0050
0 to 0.5
Sulfur (S), % 0 to 0.080
0 to 0.0050
Tin (Sn), % 6.3 to 7.5
0
Zinc (Zn), % 2.0 to 4.0
0
Residuals, % 0 to 1.0
0