MakeItFrom.com
Menu (ESC)

C93200 Bronze vs. N06985 Nickel

C93200 bronze belongs to the copper alloys classification, while N06985 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C93200 bronze and the bottom bar is N06985 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 20
45
Fatigue Strength, MPa 110
220
Poisson's Ratio 0.35
0.28
Shear Modulus, GPa 38
80
Tensile Strength: Ultimate (UTS), MPa 240
690
Tensile Strength: Yield (Proof), MPa 130
260

Thermal Properties

Latent Heat of Fusion, J/g 180
320
Maximum Temperature: Mechanical, °C 160
990
Melting Completion (Liquidus), °C 980
1350
Melting Onset (Solidus), °C 850
1260
Specific Heat Capacity, J/kg-K 360
450
Thermal Conductivity, W/m-K 59
10
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 12
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 32
55
Density, g/cm3 8.8
8.4
Embodied Carbon, kg CO2/kg material 3.2
8.8
Embodied Energy, MJ/kg 52
120
Embodied Water, L/kg 370
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
250
Resilience: Unit (Modulus of Resilience), kJ/m3 76
160
Stiffness to Weight: Axial, points 6.5
14
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 7.5
23
Strength to Weight: Bending, points 9.7
21
Thermal Diffusivity, mm2/s 18
2.6
Thermal Shock Resistance, points 9.3
16

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.35
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
21 to 23.5
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 81 to 85
1.5 to 2.5
Iron (Fe), % 0 to 0.2
18 to 21
Lead (Pb), % 6.0 to 8.0
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 8.0
Nickel (Ni), % 0 to 1.0
35.9 to 53.5
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.080
0 to 0.030
Tin (Sn), % 6.3 to 7.5
0
Tungsten (W), % 0
0 to 1.5
Zinc (Zn), % 2.0 to 4.0
0
Residuals, % 0 to 1.0
0