MakeItFrom.com
Menu (ESC)

C93200 Bronze vs. S35315 Stainless Steel

C93200 bronze belongs to the copper alloys classification, while S35315 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C93200 bronze and the bottom bar is S35315 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 20
46
Fatigue Strength, MPa 110
280
Poisson's Ratio 0.35
0.28
Rockwell B Hardness 65
82
Shear Modulus, GPa 38
78
Tensile Strength: Ultimate (UTS), MPa 240
740
Tensile Strength: Yield (Proof), MPa 130
300

Thermal Properties

Latent Heat of Fusion, J/g 180
330
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 980
1370
Melting Onset (Solidus), °C 850
1330
Specific Heat Capacity, J/kg-K 360
480
Thermal Conductivity, W/m-K 59
12
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 32
34
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 3.2
5.7
Embodied Energy, MJ/kg 52
81
Embodied Water, L/kg 370
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
270
Resilience: Unit (Modulus of Resilience), kJ/m3 76
230
Stiffness to Weight: Axial, points 6.5
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.5
26
Strength to Weight: Bending, points 9.7
23
Thermal Diffusivity, mm2/s 18
3.1
Thermal Shock Resistance, points 9.3
17

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.35
0
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.030 to 0.1
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 81 to 85
0
Iron (Fe), % 0 to 0.2
33.6 to 40.6
Lead (Pb), % 6.0 to 8.0
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0 to 1.0
34 to 36
Nitrogen (N), % 0
0.12 to 0.18
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
1.2 to 2.0
Sulfur (S), % 0 to 0.080
0 to 0.030
Tin (Sn), % 6.3 to 7.5
0
Zinc (Zn), % 2.0 to 4.0
0
Residuals, % 0 to 1.0
0