MakeItFrom.com
Menu (ESC)

C93200 Bronze vs. S66286 Stainless Steel

C93200 bronze belongs to the copper alloys classification, while S66286 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C93200 bronze and the bottom bar is S66286 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 20
17 to 40
Fatigue Strength, MPa 110
240 to 410
Poisson's Ratio 0.35
0.29
Shear Modulus, GPa 38
75
Tensile Strength: Ultimate (UTS), MPa 240
620 to 1020
Tensile Strength: Yield (Proof), MPa 130
280 to 670

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 160
920
Melting Completion (Liquidus), °C 980
1430
Melting Onset (Solidus), °C 850
1370
Specific Heat Capacity, J/kg-K 360
470
Thermal Conductivity, W/m-K 59
15
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 32
26
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 3.2
6.0
Embodied Energy, MJ/kg 52
87
Embodied Water, L/kg 370
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
150 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 76
190 to 1150
Stiffness to Weight: Axial, points 6.5
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 7.5
22 to 36
Strength to Weight: Bending, points 9.7
20 to 28
Thermal Diffusivity, mm2/s 18
4.0
Thermal Shock Resistance, points 9.3
13 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0 to 0.35
Antimony (Sb), % 0 to 0.35
0
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
13.5 to 16
Copper (Cu), % 81 to 85
0
Iron (Fe), % 0 to 0.2
49.1 to 59.5
Lead (Pb), % 6.0 to 8.0
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 0 to 1.0
24 to 27
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.080
0 to 0.030
Tin (Sn), % 6.3 to 7.5
0
Titanium (Ti), % 0
1.9 to 2.4
Vanadium (V), % 0
0.1 to 0.5
Zinc (Zn), % 2.0 to 4.0
0
Residuals, % 0 to 1.0
0