MakeItFrom.com
Menu (ESC)

C93400 Bronze vs. 535.0 Aluminum

C93400 bronze belongs to the copper alloys classification, while 535.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C93400 bronze and the bottom bar is 535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
67
Elongation at Break, % 9.1
10
Poisson's Ratio 0.35
0.33
Shear Modulus, GPa 38
25
Tensile Strength: Ultimate (UTS), MPa 270
270
Tensile Strength: Yield (Proof), MPa 150
140

Thermal Properties

Latent Heat of Fusion, J/g 180
390
Maximum Temperature: Mechanical, °C 150
170
Melting Completion (Liquidus), °C 950
630
Melting Onset (Solidus), °C 850
570
Specific Heat Capacity, J/kg-K 350
910
Thermal Conductivity, W/m-K 58
100
Thermal Expansion, µm/m-K 18
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
23
Electrical Conductivity: Equal Weight (Specific), % IACS 12
79

Otherwise Unclassified Properties

Base Metal Price, % relative 32
9.5
Density, g/cm3 8.9
2.6
Embodied Carbon, kg CO2/kg material 3.3
9.4
Embodied Energy, MJ/kg 54
160
Embodied Water, L/kg 380
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
24
Resilience: Unit (Modulus of Resilience), kJ/m3 120
150
Stiffness to Weight: Axial, points 6.3
14
Stiffness to Weight: Bending, points 17
51
Strength to Weight: Axial, points 8.3
28
Strength to Weight: Bending, points 10
35
Thermal Diffusivity, mm2/s 18
42
Thermal Shock Resistance, points 10
12

Alloy Composition

Aluminum (Al), % 0 to 0.0050
91.5 to 93.6
Antimony (Sb), % 0 to 0.5
0
Beryllium (Be), % 0
0.0030 to 0.0070
Boron (B), % 0
0 to 0.0050
Copper (Cu), % 82 to 85
0 to 0.050
Iron (Fe), % 0 to 0.2
0 to 0.15
Lead (Pb), % 7.0 to 9.0
0
Magnesium (Mg), % 0
6.2 to 7.5
Manganese (Mn), % 0
0.1 to 0.25
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 1.5
0
Silicon (Si), % 0 to 0.0050
0 to 0.15
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 7.0 to 9.0
0
Titanium (Ti), % 0
0.1 to 0.25
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0
0 to 0.15