MakeItFrom.com
Menu (ESC)

C93400 Bronze vs. 7178 Aluminum

C93400 bronze belongs to the copper alloys classification, while 7178 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C93400 bronze and the bottom bar is 7178 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
71
Elongation at Break, % 9.1
4.5 to 12
Poisson's Ratio 0.35
0.32
Shear Modulus, GPa 38
27
Tensile Strength: Ultimate (UTS), MPa 270
240 to 640
Tensile Strength: Yield (Proof), MPa 150
120 to 560

Thermal Properties

Latent Heat of Fusion, J/g 180
370
Maximum Temperature: Mechanical, °C 150
180
Melting Completion (Liquidus), °C 950
630
Melting Onset (Solidus), °C 850
480
Specific Heat Capacity, J/kg-K 350
860
Thermal Conductivity, W/m-K 58
130
Thermal Expansion, µm/m-K 18
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
31
Electrical Conductivity: Equal Weight (Specific), % IACS 12
91

Otherwise Unclassified Properties

Base Metal Price, % relative 32
10
Density, g/cm3 8.9
3.1
Embodied Carbon, kg CO2/kg material 3.3
8.2
Embodied Energy, MJ/kg 54
150
Embodied Water, L/kg 380
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
24 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 120
110 to 2220
Stiffness to Weight: Axial, points 6.3
13
Stiffness to Weight: Bending, points 17
45
Strength to Weight: Axial, points 8.3
21 to 58
Strength to Weight: Bending, points 10
28 to 54
Thermal Diffusivity, mm2/s 18
47
Thermal Shock Resistance, points 10
10 to 28

Alloy Composition

Aluminum (Al), % 0 to 0.0050
85.4 to 89.5
Antimony (Sb), % 0 to 0.5
0
Chromium (Cr), % 0
0.18 to 0.28
Copper (Cu), % 82 to 85
1.6 to 2.4
Iron (Fe), % 0 to 0.2
0 to 0.5
Lead (Pb), % 7.0 to 9.0
0
Magnesium (Mg), % 0
2.4 to 3.1
Manganese (Mn), % 0
0 to 0.3
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 1.5
0
Silicon (Si), % 0 to 0.0050
0 to 0.4
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 7.0 to 9.0
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.8
6.3 to 7.3
Residuals, % 0
0 to 0.15