MakeItFrom.com
Menu (ESC)

C93400 Bronze vs. ACI-ASTM CD3MCuN Steel

C93400 bronze belongs to the copper alloys classification, while ACI-ASTM CD3MCuN steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C93400 bronze and the bottom bar is ACI-ASTM CD3MCuN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 9.1
29
Poisson's Ratio 0.35
0.27
Shear Modulus, GPa 38
80
Tensile Strength: Ultimate (UTS), MPa 270
790
Tensile Strength: Yield (Proof), MPa 150
500

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 150
1100
Melting Completion (Liquidus), °C 950
1440
Melting Onset (Solidus), °C 850
1390
Specific Heat Capacity, J/kg-K 350
480
Thermal Conductivity, W/m-K 58
15
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 32
20
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.3
3.9
Embodied Energy, MJ/kg 54
54
Embodied Water, L/kg 380
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
200
Resilience: Unit (Modulus of Resilience), kJ/m3 120
620
Stiffness to Weight: Axial, points 6.3
15
Stiffness to Weight: Bending, points 17
25
Strength to Weight: Axial, points 8.3
28
Strength to Weight: Bending, points 10
24
Thermal Diffusivity, mm2/s 18
4.1
Thermal Shock Resistance, points 10
22

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26.7
Copper (Cu), % 82 to 85
1.4 to 1.9
Iron (Fe), % 0 to 0.2
58.2 to 65.9
Lead (Pb), % 7.0 to 9.0
0
Manganese (Mn), % 0
0 to 1.2
Molybdenum (Mo), % 0
2.9 to 3.8
Nickel (Ni), % 0 to 1.0
5.6 to 6.7
Nitrogen (N), % 0
0.22 to 0.33
Phosphorus (P), % 0 to 1.5
0 to 0.030
Silicon (Si), % 0 to 0.0050
0 to 1.1
Sulfur (S), % 0 to 0.080
0 to 0.030
Tin (Sn), % 7.0 to 9.0
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 1.0
0