MakeItFrom.com
Menu (ESC)

C93400 Bronze vs. AISI 304Cu Stainless Steel

C93400 bronze belongs to the copper alloys classification, while AISI 304Cu stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C93400 bronze and the bottom bar is AISI 304Cu stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 9.1
45
Poisson's Ratio 0.35
0.28
Shear Modulus, GPa 38
76
Tensile Strength: Ultimate (UTS), MPa 270
530
Tensile Strength: Yield (Proof), MPa 150
210

Thermal Properties

Latent Heat of Fusion, J/g 180
290
Maximum Temperature: Mechanical, °C 150
930
Melting Completion (Liquidus), °C 950
1410
Melting Onset (Solidus), °C 850
1370
Specific Heat Capacity, J/kg-K 350
480
Thermal Conductivity, W/m-K 58
13
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 32
16
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.3
3.0
Embodied Energy, MJ/kg 54
43
Embodied Water, L/kg 380
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
190
Resilience: Unit (Modulus of Resilience), kJ/m3 120
110
Stiffness to Weight: Axial, points 6.3
14
Stiffness to Weight: Bending, points 17
25
Strength to Weight: Axial, points 8.3
19
Strength to Weight: Bending, points 10
19
Thermal Diffusivity, mm2/s 18
3.5
Thermal Shock Resistance, points 10
12

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 82 to 85
3.0 to 4.0
Iron (Fe), % 0 to 0.2
63.9 to 72
Lead (Pb), % 7.0 to 9.0
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0 to 1.0
8.0 to 10
Phosphorus (P), % 0 to 1.5
0 to 0.045
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.080
0 to 0.030
Tin (Sn), % 7.0 to 9.0
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 1.0
0