MakeItFrom.com
Menu (ESC)

C93400 Bronze vs. ASTM A588 Steel

C93400 bronze belongs to the copper alloys classification, while ASTM A588 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C93400 bronze and the bottom bar is ASTM A588 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 9.1
22
Poisson's Ratio 0.35
0.29
Shear Modulus, GPa 38
73
Tensile Strength: Ultimate (UTS), MPa 270
550
Tensile Strength: Yield (Proof), MPa 150
390

Thermal Properties

Latent Heat of Fusion, J/g 180
250 to 260
Maximum Temperature: Mechanical, °C 150
410
Melting Completion (Liquidus), °C 950
1460
Melting Onset (Solidus), °C 850
1410 to 1420
Specific Heat Capacity, J/kg-K 350
470
Thermal Conductivity, W/m-K 58
43 to 44
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 32
2.3 to 2.5
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.3
1.5 to 1.6
Embodied Energy, MJ/kg 54
20 to 22
Embodied Water, L/kg 380
50 to 51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
110
Resilience: Unit (Modulus of Resilience), kJ/m3 120
400
Stiffness to Weight: Axial, points 6.3
13
Stiffness to Weight: Bending, points 17
24
Strength to Weight: Axial, points 8.3
20
Strength to Weight: Bending, points 10
19
Thermal Diffusivity, mm2/s 18
12
Thermal Shock Resistance, points 10
16