MakeItFrom.com
Menu (ESC)

C93400 Bronze vs. EN 1.4310 Stainless Steel

C93400 bronze belongs to the copper alloys classification, while EN 1.4310 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C93400 bronze and the bottom bar is EN 1.4310 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 9.1
14 to 45
Poisson's Ratio 0.35
0.28
Shear Modulus, GPa 38
77
Tensile Strength: Ultimate (UTS), MPa 270
730 to 900
Tensile Strength: Yield (Proof), MPa 150
260 to 570

Thermal Properties

Latent Heat of Fusion, J/g 180
290
Maximum Temperature: Mechanical, °C 150
910
Melting Completion (Liquidus), °C 950
1420
Melting Onset (Solidus), °C 850
1380
Specific Heat Capacity, J/kg-K 350
480
Thermal Conductivity, W/m-K 58
15
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 32
14
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.3
2.9
Embodied Energy, MJ/kg 54
42
Embodied Water, L/kg 380
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
110 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 120
170 to 830
Stiffness to Weight: Axial, points 6.3
14
Stiffness to Weight: Bending, points 17
25
Strength to Weight: Axial, points 8.3
26 to 32
Strength to Weight: Bending, points 10
23 to 27
Thermal Diffusivity, mm2/s 18
4.0
Thermal Shock Resistance, points 10
15 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
16 to 19
Copper (Cu), % 82 to 85
0
Iron (Fe), % 0 to 0.2
66.4 to 78
Lead (Pb), % 7.0 to 9.0
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.8
Nickel (Ni), % 0 to 1.0
6.0 to 9.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 1.5
0 to 0.045
Silicon (Si), % 0 to 0.0050
0 to 2.0
Sulfur (S), % 0 to 0.080
0 to 0.015
Tin (Sn), % 7.0 to 9.0
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 1.0
0