MakeItFrom.com
Menu (ESC)

C93400 Bronze vs. EN 1.5507 Steel

C93400 bronze belongs to the copper alloys classification, while EN 1.5507 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C93400 bronze and the bottom bar is EN 1.5507 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Poisson's Ratio 0.35
0.29
Shear Modulus, GPa 38
73
Tensile Strength: Ultimate (UTS), MPa 270
450 to 880

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 150
410
Melting Completion (Liquidus), °C 950
1460
Melting Onset (Solidus), °C 850
1420
Specific Heat Capacity, J/kg-K 350
470
Thermal Conductivity, W/m-K 58
49
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 32
2.0
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.3
1.4
Embodied Energy, MJ/kg 54
19
Embodied Water, L/kg 380
49

Common Calculations

Stiffness to Weight: Axial, points 6.3
13
Stiffness to Weight: Bending, points 17
24
Strength to Weight: Axial, points 8.3
16 to 31
Strength to Weight: Bending, points 10
17 to 26
Thermal Diffusivity, mm2/s 18
13
Thermal Shock Resistance, points 10
13 to 26

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0.020 to 0.080
Antimony (Sb), % 0 to 0.5
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.21 to 0.25
Chromium (Cr), % 0
0.25 to 0.35
Copper (Cu), % 82 to 85
0 to 0.25
Iron (Fe), % 0 to 0.2
97.8 to 98.7
Lead (Pb), % 7.0 to 9.0
0
Manganese (Mn), % 0
0.8 to 1.0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 1.5
0 to 0.015
Silicon (Si), % 0 to 0.0050
0 to 0.15
Sulfur (S), % 0 to 0.080
0 to 0.015
Tin (Sn), % 7.0 to 9.0
0
Titanium (Ti), % 0
0 to 0.060
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 1.0
0