MakeItFrom.com
Menu (ESC)

C93400 Bronze vs. SAE-AISI 1038 Steel

C93400 bronze belongs to the copper alloys classification, while SAE-AISI 1038 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C93400 bronze and the bottom bar is SAE-AISI 1038 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 9.1
14 to 20
Poisson's Ratio 0.35
0.29
Shear Modulus, GPa 38
73
Tensile Strength: Ultimate (UTS), MPa 270
590 to 640
Tensile Strength: Yield (Proof), MPa 150
320 to 540

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 150
400
Melting Completion (Liquidus), °C 950
1460
Melting Onset (Solidus), °C 850
1420
Specific Heat Capacity, J/kg-K 350
470
Thermal Conductivity, W/m-K 58
51
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 32
1.8
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.3
1.4
Embodied Energy, MJ/kg 54
18
Embodied Water, L/kg 380
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
83 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 120
270 to 790
Stiffness to Weight: Axial, points 6.3
13
Stiffness to Weight: Bending, points 17
24
Strength to Weight: Axial, points 8.3
21 to 23
Strength to Weight: Bending, points 10
20 to 21
Thermal Diffusivity, mm2/s 18
14
Thermal Shock Resistance, points 10
19 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0.35 to 0.42
Copper (Cu), % 82 to 85
0
Iron (Fe), % 0 to 0.2
98.6 to 99.05
Lead (Pb), % 7.0 to 9.0
0
Manganese (Mn), % 0
0.6 to 0.9
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.080
0 to 0.050
Tin (Sn), % 7.0 to 9.0
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 1.0
0