MakeItFrom.com
Menu (ESC)

C93400 Bronze vs. SAE-AISI 4620 Steel

C93400 bronze belongs to the copper alloys classification, while SAE-AISI 4620 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C93400 bronze and the bottom bar is SAE-AISI 4620 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 9.1
16 to 27
Poisson's Ratio 0.35
0.29
Shear Modulus, GPa 38
73
Tensile Strength: Ultimate (UTS), MPa 270
490 to 680
Tensile Strength: Yield (Proof), MPa 150
350 to 550

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 150
410
Melting Completion (Liquidus), °C 950
1460
Melting Onset (Solidus), °C 850
1420
Specific Heat Capacity, J/kg-K 350
470
Thermal Conductivity, W/m-K 58
47
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 12
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 32
3.2
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 3.3
1.6
Embodied Energy, MJ/kg 54
22
Embodied Water, L/kg 380
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
100 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 120
330 to 800
Stiffness to Weight: Axial, points 6.3
13
Stiffness to Weight: Bending, points 17
24
Strength to Weight: Axial, points 8.3
17 to 24
Strength to Weight: Bending, points 10
18 to 22
Thermal Diffusivity, mm2/s 18
13
Thermal Shock Resistance, points 10
15 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0.17 to 0.22
Copper (Cu), % 82 to 85
0
Iron (Fe), % 0 to 0.2
96.4 to 97.4
Lead (Pb), % 7.0 to 9.0
0
Manganese (Mn), % 0
0.45 to 0.65
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0 to 1.0
1.7 to 2.0
Phosphorus (P), % 0 to 1.5
0 to 0.035
Silicon (Si), % 0 to 0.0050
0.15 to 0.35
Sulfur (S), % 0 to 0.080
0 to 0.040
Tin (Sn), % 7.0 to 9.0
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 1.0
0