MakeItFrom.com
Menu (ESC)

C93400 Bronze vs. C82000 Copper

Both C93400 bronze and C82000 copper are copper alloys. They have 84% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C93400 bronze and the bottom bar is C82000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Elongation at Break, % 9.1
8.0 to 20
Poisson's Ratio 0.35
0.34
Shear Modulus, GPa 38
45
Tensile Strength: Ultimate (UTS), MPa 270
350 to 690
Tensile Strength: Yield (Proof), MPa 150
140 to 520

Thermal Properties

Latent Heat of Fusion, J/g 180
220
Maximum Temperature: Mechanical, °C 150
220
Melting Completion (Liquidus), °C 950
1090
Melting Onset (Solidus), °C 850
970
Specific Heat Capacity, J/kg-K 350
390
Thermal Conductivity, W/m-K 58
260
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
45
Electrical Conductivity: Equal Weight (Specific), % IACS 12
46

Otherwise Unclassified Properties

Base Metal Price, % relative 32
60
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 3.3
5.0
Embodied Energy, MJ/kg 54
77
Embodied Water, L/kg 380
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
51 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 120
80 to 1120
Stiffness to Weight: Axial, points 6.3
7.5
Stiffness to Weight: Bending, points 17
18
Strength to Weight: Axial, points 8.3
11 to 22
Strength to Weight: Bending, points 10
12 to 20
Thermal Diffusivity, mm2/s 18
76
Thermal Shock Resistance, points 10
12 to 24

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0 to 0.1
Antimony (Sb), % 0 to 0.5
0
Beryllium (Be), % 0
0.45 to 0.8
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
2.2 to 2.7
Copper (Cu), % 82 to 85
95.2 to 97.4
Iron (Fe), % 0 to 0.2
0 to 0.1
Lead (Pb), % 7.0 to 9.0
0 to 0.020
Nickel (Ni), % 0 to 1.0
0 to 0.2
Phosphorus (P), % 0 to 1.5
0
Silicon (Si), % 0 to 0.0050
0 to 0.15
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 7.0 to 9.0
0 to 0.1
Zinc (Zn), % 0 to 0.8
0 to 0.1
Residuals, % 0
0 to 0.5