MakeItFrom.com
Menu (ESC)

C93400 Bronze vs. N06603 Nickel

C93400 bronze belongs to the copper alloys classification, while N06603 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C93400 bronze and the bottom bar is N06603 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 9.1
28
Poisson's Ratio 0.35
0.28
Shear Modulus, GPa 38
76
Tensile Strength: Ultimate (UTS), MPa 270
740
Tensile Strength: Yield (Proof), MPa 150
340

Thermal Properties

Latent Heat of Fusion, J/g 180
320
Maximum Temperature: Mechanical, °C 150
1000
Melting Completion (Liquidus), °C 950
1340
Melting Onset (Solidus), °C 850
1300
Specific Heat Capacity, J/kg-K 350
480
Thermal Conductivity, W/m-K 58
11
Thermal Expansion, µm/m-K 18
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 12
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 32
50
Density, g/cm3 8.9
8.2
Embodied Carbon, kg CO2/kg material 3.3
8.4
Embodied Energy, MJ/kg 54
120
Embodied Water, L/kg 380
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
170
Resilience: Unit (Modulus of Resilience), kJ/m3 120
300
Stiffness to Weight: Axial, points 6.3
13
Stiffness to Weight: Bending, points 17
24
Strength to Weight: Axial, points 8.3
25
Strength to Weight: Bending, points 10
22
Thermal Diffusivity, mm2/s 18
2.9
Thermal Shock Resistance, points 10
20

Alloy Composition

Aluminum (Al), % 0 to 0.0050
2.4 to 3.0
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0.2 to 0.4
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 82 to 85
0 to 0.5
Iron (Fe), % 0 to 0.2
8.0 to 11
Lead (Pb), % 7.0 to 9.0
0
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 0 to 1.0
57.7 to 65.6
Phosphorus (P), % 0 to 1.5
0 to 0.2
Silicon (Si), % 0 to 0.0050
0 to 0.5
Sulfur (S), % 0 to 0.080
0 to 0.010
Tin (Sn), % 7.0 to 9.0
0
Titanium (Ti), % 0
0.010 to 0.25
Yttrium (Y), % 0
0.010 to 0.15
Zinc (Zn), % 0 to 0.8
0.010 to 0.1
Residuals, % 0 to 1.0
0