MakeItFrom.com
Menu (ESC)

C93400 Bronze vs. N07750 Nickel

C93400 bronze belongs to the copper alloys classification, while N07750 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C93400 bronze and the bottom bar is N07750 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 9.1
25
Poisson's Ratio 0.35
0.29
Shear Modulus, GPa 38
73
Tensile Strength: Ultimate (UTS), MPa 270
1200
Tensile Strength: Yield (Proof), MPa 150
820

Thermal Properties

Latent Heat of Fusion, J/g 180
310
Maximum Temperature: Mechanical, °C 150
960
Melting Completion (Liquidus), °C 950
1430
Melting Onset (Solidus), °C 850
1400
Specific Heat Capacity, J/kg-K 350
460
Thermal Conductivity, W/m-K 58
13
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 12
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 32
60
Density, g/cm3 8.9
8.4
Embodied Carbon, kg CO2/kg material 3.3
10
Embodied Energy, MJ/kg 54
150
Embodied Water, L/kg 380
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
270
Resilience: Unit (Modulus of Resilience), kJ/m3 120
1770
Stiffness to Weight: Axial, points 6.3
13
Stiffness to Weight: Bending, points 17
23
Strength to Weight: Axial, points 8.3
40
Strength to Weight: Bending, points 10
30
Thermal Diffusivity, mm2/s 18
3.3
Thermal Shock Resistance, points 10
36

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0.4 to 1.0
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
14 to 17
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 82 to 85
0 to 0.5
Iron (Fe), % 0 to 0.2
5.0 to 9.0
Lead (Pb), % 7.0 to 9.0
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 1.0
70 to 77.7
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0 to 1.5
0
Silicon (Si), % 0 to 0.0050
0 to 0.5
Sulfur (S), % 0 to 0.080
0 to 0.010
Tin (Sn), % 7.0 to 9.0
0
Titanium (Ti), % 0
2.3 to 2.8
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 1.0
0