MakeItFrom.com
Menu (ESC)

C93400 Bronze vs. N08026 Nickel

C93400 bronze belongs to the copper alloys classification, while N08026 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C93400 bronze and the bottom bar is N08026 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 9.1
34
Poisson's Ratio 0.35
0.28
Shear Modulus, GPa 38
80
Tensile Strength: Ultimate (UTS), MPa 270
620
Tensile Strength: Yield (Proof), MPa 150
270

Thermal Properties

Latent Heat of Fusion, J/g 180
310
Maximum Temperature: Mechanical, °C 150
990
Melting Completion (Liquidus), °C 950
1430
Melting Onset (Solidus), °C 850
1380
Specific Heat Capacity, J/kg-K 350
460
Thermal Conductivity, W/m-K 58
12
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 12
1.7

Otherwise Unclassified Properties

Base Metal Price, % relative 32
41
Density, g/cm3 8.9
8.2
Embodied Carbon, kg CO2/kg material 3.3
7.2
Embodied Energy, MJ/kg 54
98
Embodied Water, L/kg 380
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
170
Resilience: Unit (Modulus of Resilience), kJ/m3 120
180
Stiffness to Weight: Axial, points 6.3
14
Stiffness to Weight: Bending, points 17
24
Strength to Weight: Axial, points 8.3
21
Strength to Weight: Bending, points 10
20
Thermal Diffusivity, mm2/s 18
3.2
Thermal Shock Resistance, points 10
15

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22 to 26
Copper (Cu), % 82 to 85
2.0 to 4.0
Iron (Fe), % 0 to 0.2
24.4 to 37.9
Lead (Pb), % 7.0 to 9.0
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 6.7
Nickel (Ni), % 0 to 1.0
33 to 37.2
Nitrogen (N), % 0
0.1 to 0.16
Phosphorus (P), % 0 to 1.5
0 to 0.030
Silicon (Si), % 0 to 0.0050
0 to 0.5
Sulfur (S), % 0 to 0.080
0 to 0.030
Tin (Sn), % 7.0 to 9.0
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 1.0
0