MakeItFrom.com
Menu (ESC)

C93400 Bronze vs. R56401 Titanium

C93400 bronze belongs to the copper alloys classification, while R56401 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C93400 bronze and the bottom bar is R56401 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 9.1
9.1
Poisson's Ratio 0.35
0.32
Shear Modulus, GPa 38
40
Tensile Strength: Ultimate (UTS), MPa 270
940
Tensile Strength: Yield (Proof), MPa 150
850

Thermal Properties

Latent Heat of Fusion, J/g 180
410
Maximum Temperature: Mechanical, °C 150
340
Melting Completion (Liquidus), °C 950
1610
Melting Onset (Solidus), °C 850
1560
Specific Heat Capacity, J/kg-K 350
560
Thermal Conductivity, W/m-K 58
7.1
Thermal Expansion, µm/m-K 18
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 32
36
Density, g/cm3 8.9
4.5
Embodied Carbon, kg CO2/kg material 3.3
38
Embodied Energy, MJ/kg 54
610
Embodied Water, L/kg 380
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
83
Resilience: Unit (Modulus of Resilience), kJ/m3 120
3440
Stiffness to Weight: Axial, points 6.3
13
Stiffness to Weight: Bending, points 17
35
Strength to Weight: Axial, points 8.3
59
Strength to Weight: Bending, points 10
48
Thermal Diffusivity, mm2/s 18
2.9
Thermal Shock Resistance, points 10
67

Alloy Composition

Aluminum (Al), % 0 to 0.0050
5.5 to 6.5
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 82 to 85
0
Hydrogen (H), % 0
0 to 0.012
Iron (Fe), % 0 to 0.2
0 to 0.25
Lead (Pb), % 7.0 to 9.0
0
Nickel (Ni), % 0 to 1.0
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 1.5
0
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 7.0 to 9.0
0
Titanium (Ti), % 0
88.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 1.0
0