MakeItFrom.com
Menu (ESC)

C93500 Bronze vs. EN 1.4980 Stainless Steel

C93500 bronze belongs to the copper alloys classification, while EN 1.4980 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C93500 bronze and the bottom bar is EN 1.4980 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 15
17
Poisson's Ratio 0.35
0.29
Shear Modulus, GPa 38
75
Tensile Strength: Ultimate (UTS), MPa 220
1030
Tensile Strength: Yield (Proof), MPa 110
680

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 160
920
Melting Completion (Liquidus), °C 1000
1430
Melting Onset (Solidus), °C 850
1380
Specific Heat Capacity, J/kg-K 360
470
Thermal Conductivity, W/m-K 70
13
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 15
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 31
26
Density, g/cm3 9.0
7.9
Embodied Carbon, kg CO2/kg material 3.0
6.0
Embodied Energy, MJ/kg 49
87
Embodied Water, L/kg 350
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
150
Resilience: Unit (Modulus of Resilience), kJ/m3 59
1180
Stiffness to Weight: Axial, points 6.3
14
Stiffness to Weight: Bending, points 17
24
Strength to Weight: Axial, points 6.9
36
Strength to Weight: Bending, points 9.1
28
Thermal Diffusivity, mm2/s 22
3.5
Thermal Shock Resistance, points 8.5
22

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0 to 0.35
Antimony (Sb), % 0 to 0.3
0
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0.030 to 0.080
Chromium (Cr), % 0
13.5 to 16
Copper (Cu), % 83 to 86
0
Iron (Fe), % 0 to 0.2
49.2 to 58.5
Lead (Pb), % 8.0 to 10
0
Manganese (Mn), % 0
1.0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 0 to 1.0
24 to 27
Phosphorus (P), % 0 to 1.5
0 to 0.025
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.080
0 to 0.015
Tin (Sn), % 4.3 to 6.0
0
Titanium (Ti), % 0
1.9 to 2.3
Vanadium (V), % 0
0.1 to 0.5
Zinc (Zn), % 0 to 2.0
0
Residuals, % 0 to 1.0
0