MakeItFrom.com
Menu (ESC)

C93500 Bronze vs. SAE-AISI 12L14 Steel

C93500 bronze belongs to the copper alloys classification, while SAE-AISI 12L14 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C93500 bronze and the bottom bar is SAE-AISI 12L14 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 15
11 to 25
Poisson's Ratio 0.35
0.29
Shear Modulus, GPa 38
72
Tensile Strength: Ultimate (UTS), MPa 220
440 to 620
Tensile Strength: Yield (Proof), MPa 110
260 to 460

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 1000
1460
Melting Onset (Solidus), °C 850
1420
Specific Heat Capacity, J/kg-K 360
470
Thermal Conductivity, W/m-K 70
51
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 15
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 31
1.8
Density, g/cm3 9.0
7.9
Embodied Carbon, kg CO2/kg material 3.0
1.4
Embodied Energy, MJ/kg 49
18
Embodied Water, L/kg 350
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
64 to 93
Resilience: Unit (Modulus of Resilience), kJ/m3 59
180 to 560
Stiffness to Weight: Axial, points 6.3
13
Stiffness to Weight: Bending, points 17
24
Strength to Weight: Axial, points 6.9
15 to 22
Strength to Weight: Bending, points 9.1
16 to 20
Thermal Diffusivity, mm2/s 22
14
Thermal Shock Resistance, points 8.5
14 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.3
0
Carbon (C), % 0
0 to 0.15
Copper (Cu), % 83 to 86
0
Iron (Fe), % 0 to 0.2
97.9 to 98.7
Lead (Pb), % 8.0 to 10
0.15 to 0.35
Manganese (Mn), % 0
0.85 to 1.2
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 1.5
0.040 to 0.090
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.080
0.26 to 0.35
Tin (Sn), % 4.3 to 6.0
0
Zinc (Zn), % 0 to 2.0
0
Residuals, % 0 to 1.0
0