MakeItFrom.com
Menu (ESC)

C93500 Bronze vs. C10700 Copper

Both C93500 bronze and C10700 copper are copper alloys. They have 85% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C93500 bronze and the bottom bar is C10700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Elongation at Break, % 15
2.2 to 50
Poisson's Ratio 0.35
0.34
Shear Modulus, GPa 38
43
Tensile Strength: Ultimate (UTS), MPa 220
230 to 410
Tensile Strength: Yield (Proof), MPa 110
77 to 410

Thermal Properties

Latent Heat of Fusion, J/g 180
210
Maximum Temperature: Mechanical, °C 160
200
Melting Completion (Liquidus), °C 1000
1080
Melting Onset (Solidus), °C 850
1080
Specific Heat Capacity, J/kg-K 360
390
Thermal Conductivity, W/m-K 70
390
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
100
Electrical Conductivity: Equal Weight (Specific), % IACS 15
100

Otherwise Unclassified Properties

Base Metal Price, % relative 31
35
Density, g/cm3 9.0
9.0
Embodied Carbon, kg CO2/kg material 3.0
2.7
Embodied Energy, MJ/kg 49
42
Embodied Water, L/kg 350
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
7.9 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 59
25 to 710
Stiffness to Weight: Axial, points 6.3
7.2
Stiffness to Weight: Bending, points 17
18
Strength to Weight: Axial, points 6.9
7.2 to 13
Strength to Weight: Bending, points 9.1
9.4 to 14
Thermal Diffusivity, mm2/s 22
110
Thermal Shock Resistance, points 8.5
8.2 to 15

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.3
0
Copper (Cu), % 83 to 86
99.83 to 99.915
Iron (Fe), % 0 to 0.2
0
Lead (Pb), % 8.0 to 10
0
Nickel (Ni), % 0 to 1.0
0
Oxygen (O), % 0
0 to 0.0010
Phosphorus (P), % 0 to 1.5
0
Silicon (Si), % 0 to 0.0050
0
Silver (Ag), % 0
0.085 to 0.12
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 4.3 to 6.0
0
Zinc (Zn), % 0 to 2.0
0
Residuals, % 0
0 to 0.050