MakeItFrom.com
Menu (ESC)

C93700 Bronze vs. ACI-ASTM CF16F Steel

C93700 bronze belongs to the copper alloys classification, while ACI-ASTM CF16F steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C93700 bronze and the bottom bar is ACI-ASTM CF16F steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 99
200
Elongation at Break, % 20
50
Fatigue Strength, MPa 90
270
Poisson's Ratio 0.35
0.28
Shear Modulus, GPa 37
77
Tensile Strength: Ultimate (UTS), MPa 240
530
Tensile Strength: Yield (Proof), MPa 130
280

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 140
980
Melting Completion (Liquidus), °C 930
1420
Melting Onset (Solidus), °C 760
1400
Specific Heat Capacity, J/kg-K 350
480
Thermal Conductivity, W/m-K 47
16
Thermal Expansion, µm/m-K 19
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 33
18
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.5
3.4
Embodied Energy, MJ/kg 57
47
Embodied Water, L/kg 390
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
220
Resilience: Unit (Modulus of Resilience), kJ/m3 79
190
Stiffness to Weight: Axial, points 6.2
14
Stiffness to Weight: Bending, points 17
25
Strength to Weight: Axial, points 7.5
19
Strength to Weight: Bending, points 9.6
19
Thermal Diffusivity, mm2/s 15
4.3
Thermal Shock Resistance, points 9.4
12

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.16
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 78 to 82
0
Iron (Fe), % 0 to 0.15
61.3 to 72.8
Lead (Pb), % 8.0 to 11
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 1.5
Nickel (Ni), % 0 to 1.0
9.0 to 12
Phosphorus (P), % 0 to 1.5
0 to 0.17
Selenium (Se), % 0
0.2 to 0.35
Silicon (Si), % 0 to 0.0050
0 to 2.0
Sulfur (S), % 0 to 0.080
0 to 0.040
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 1.0
0