MakeItFrom.com
Menu (ESC)

C93700 Bronze vs. ASTM A387 Grade 2 Steel

C93700 bronze belongs to the copper alloys classification, while ASTM A387 grade 2 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C93700 bronze and the bottom bar is ASTM A387 grade 2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 99
190
Elongation at Break, % 20
25
Fatigue Strength, MPa 90
190 to 250
Poisson's Ratio 0.35
0.29
Shear Modulus, GPa 37
73
Tensile Strength: Ultimate (UTS), MPa 240
470 to 550
Tensile Strength: Yield (Proof), MPa 130
260 to 350

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 140
420
Melting Completion (Liquidus), °C 930
1470
Melting Onset (Solidus), °C 760
1420
Specific Heat Capacity, J/kg-K 350
470
Thermal Conductivity, W/m-K 47
45
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 10
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 33
2.6
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 3.5
1.6
Embodied Energy, MJ/kg 57
20
Embodied Water, L/kg 390
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 79
180 to 320
Stiffness to Weight: Axial, points 6.2
13
Stiffness to Weight: Bending, points 17
24
Strength to Weight: Axial, points 7.5
16 to 20
Strength to Weight: Bending, points 9.6
17 to 19
Thermal Diffusivity, mm2/s 15
12
Thermal Shock Resistance, points 9.4
14 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0.050 to 0.21
Chromium (Cr), % 0
0.5 to 0.8
Copper (Cu), % 78 to 82
0
Iron (Fe), % 0 to 0.15
97.1 to 98.3
Lead (Pb), % 8.0 to 11
0
Manganese (Mn), % 0
0.55 to 0.8
Molybdenum (Mo), % 0
0.45 to 0.6
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 1.5
0 to 0.025
Silicon (Si), % 0 to 0.0050
0.15 to 0.4
Sulfur (S), % 0 to 0.080
0 to 0.025
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 1.0
0