MakeItFrom.com
Menu (ESC)

C93700 Bronze vs. EN 1.4421 Stainless Steel

C93700 bronze belongs to the copper alloys classification, while EN 1.4421 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C93700 bronze and the bottom bar is EN 1.4421 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 99
200
Elongation at Break, % 20
11 to 17
Fatigue Strength, MPa 90
380 to 520
Impact Strength: V-Notched Charpy, J 15
30 to 67
Poisson's Ratio 0.35
0.28
Shear Modulus, GPa 37
77
Tensile Strength: Ultimate (UTS), MPa 240
880 to 1100
Tensile Strength: Yield (Proof), MPa 130
620 to 950

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 140
870
Melting Completion (Liquidus), °C 930
1440
Melting Onset (Solidus), °C 760
1400
Specific Heat Capacity, J/kg-K 350
480
Thermal Conductivity, W/m-K 47
16
Thermal Expansion, µm/m-K 19
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 33
12
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.5
2.6
Embodied Energy, MJ/kg 57
36
Embodied Water, L/kg 390
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
120 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 79
960 to 2270
Stiffness to Weight: Axial, points 6.2
14
Stiffness to Weight: Bending, points 17
25
Strength to Weight: Axial, points 7.5
31 to 39
Strength to Weight: Bending, points 9.6
26 to 30
Thermal Diffusivity, mm2/s 15
4.4
Thermal Shock Resistance, points 9.4
31 to 39

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 78 to 82
0
Iron (Fe), % 0 to 0.15
74.4 to 80.5
Lead (Pb), % 8.0 to 11
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 0 to 1.0
4.0 to 5.5
Phosphorus (P), % 0 to 1.5
0 to 0.035
Silicon (Si), % 0 to 0.0050
0 to 0.8
Sulfur (S), % 0 to 0.080
0 to 0.020
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 1.0
0