MakeItFrom.com
Menu (ESC)

C93700 Bronze vs. C10800 Copper

Both C93700 bronze and C10800 copper are copper alloys. They have 80% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C93700 bronze and the bottom bar is C10800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 99
120
Elongation at Break, % 20
4.0 to 50
Poisson's Ratio 0.35
0.34
Rockwell B Hardness 60
10 to 60
Shear Modulus, GPa 37
43
Tensile Strength: Ultimate (UTS), MPa 240
220 to 380
Tensile Strength: Yield (Proof), MPa 130
75 to 370

Thermal Properties

Latent Heat of Fusion, J/g 170
210
Maximum Temperature: Mechanical, °C 140
200
Melting Completion (Liquidus), °C 930
1080
Melting Onset (Solidus), °C 760
1080
Specific Heat Capacity, J/kg-K 350
390
Thermal Conductivity, W/m-K 47
350
Thermal Expansion, µm/m-K 19
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
92
Electrical Conductivity: Equal Weight (Specific), % IACS 10
92

Otherwise Unclassified Properties

Base Metal Price, % relative 33
31
Density, g/cm3 8.9
9.0
Embodied Carbon, kg CO2/kg material 3.5
2.6
Embodied Energy, MJ/kg 57
41
Embodied Water, L/kg 390
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
15 to 88
Resilience: Unit (Modulus of Resilience), kJ/m3 79
24 to 600
Stiffness to Weight: Axial, points 6.2
7.2
Stiffness to Weight: Bending, points 17
18
Strength to Weight: Axial, points 7.5
6.8 to 12
Strength to Weight: Bending, points 9.6
9.1 to 13
Thermal Diffusivity, mm2/s 15
100
Thermal Shock Resistance, points 9.4
7.8 to 13

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.5
0
Copper (Cu), % 78 to 82
99.95 to 99.995
Iron (Fe), % 0 to 0.15
0
Lead (Pb), % 8.0 to 11
0
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 1.5
0.0050 to 0.012
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 1.0
0