MakeItFrom.com
Menu (ESC)

C93700 Bronze vs. N06920 Nickel

C93700 bronze belongs to the copper alloys classification, while N06920 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C93700 bronze and the bottom bar is N06920 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 99
210
Elongation at Break, % 20
39
Fatigue Strength, MPa 90
220
Poisson's Ratio 0.35
0.28
Shear Modulus, GPa 37
82
Tensile Strength: Ultimate (UTS), MPa 240
730
Tensile Strength: Yield (Proof), MPa 130
270

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 140
990
Melting Completion (Liquidus), °C 930
1500
Melting Onset (Solidus), °C 760
1440
Specific Heat Capacity, J/kg-K 350
440
Thermal Conductivity, W/m-K 47
11
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 10
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 33
55
Density, g/cm3 8.9
8.6
Embodied Carbon, kg CO2/kg material 3.5
9.4
Embodied Energy, MJ/kg 57
130
Embodied Water, L/kg 390
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
230
Resilience: Unit (Modulus of Resilience), kJ/m3 79
180
Stiffness to Weight: Axial, points 6.2
14
Stiffness to Weight: Bending, points 17
23
Strength to Weight: Axial, points 7.5
24
Strength to Weight: Bending, points 9.6
21
Thermal Diffusivity, mm2/s 15
2.8
Thermal Shock Resistance, points 9.4
19

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20.5 to 23
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 78 to 82
0
Iron (Fe), % 0 to 0.15
17 to 20
Lead (Pb), % 8.0 to 11
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0 to 1.0
36.9 to 53.5
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.080
0 to 0.030
Tin (Sn), % 9.0 to 11
0
Tungsten (W), % 0
1.0 to 3.0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 1.0
0