MakeItFrom.com
Menu (ESC)

C93700 Bronze vs. S44537 Stainless Steel

C93700 bronze belongs to the copper alloys classification, while S44537 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C93700 bronze and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 99
200
Elongation at Break, % 20
21
Fatigue Strength, MPa 90
230
Poisson's Ratio 0.35
0.27
Rockwell B Hardness 60
80
Shear Modulus, GPa 37
79
Tensile Strength: Ultimate (UTS), MPa 240
510
Tensile Strength: Yield (Proof), MPa 130
360

Thermal Properties

Latent Heat of Fusion, J/g 170
290
Maximum Temperature: Mechanical, °C 140
1000
Melting Completion (Liquidus), °C 930
1480
Melting Onset (Solidus), °C 760
1430
Specific Heat Capacity, J/kg-K 350
470
Thermal Conductivity, W/m-K 47
21
Thermal Expansion, µm/m-K 19
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 10
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 33
19
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 3.5
3.4
Embodied Energy, MJ/kg 57
50
Embodied Water, L/kg 390
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
95
Resilience: Unit (Modulus of Resilience), kJ/m3 79
320
Stiffness to Weight: Axial, points 6.2
14
Stiffness to Weight: Bending, points 17
25
Strength to Weight: Axial, points 7.5
18
Strength to Weight: Bending, points 9.6
18
Thermal Diffusivity, mm2/s 15
5.6
Thermal Shock Resistance, points 9.4
17

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0 to 0.1
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 24
Copper (Cu), % 78 to 82
0 to 0.5
Iron (Fe), % 0 to 0.15
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Lead (Pb), % 8.0 to 11
0
Manganese (Mn), % 0
0 to 0.8
Nickel (Ni), % 0 to 1.0
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0 to 1.5
0 to 0.050
Silicon (Si), % 0 to 0.0050
0.1 to 0.6
Sulfur (S), % 0 to 0.080
0 to 0.0060
Tin (Sn), % 9.0 to 11
0
Titanium (Ti), % 0
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 1.0
0