MakeItFrom.com
Menu (ESC)

C93800 Bronze vs. EN 2.4951 Nickel

C93800 bronze belongs to the copper alloys classification, while EN 2.4951 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C93800 bronze and the bottom bar is EN 2.4951 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 96
190
Elongation at Break, % 9.7
34
Poisson's Ratio 0.35
0.29
Shear Modulus, GPa 35
76
Tensile Strength: Ultimate (UTS), MPa 200
750
Tensile Strength: Yield (Proof), MPa 120
270

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 140
1150
Melting Completion (Liquidus), °C 940
1360
Melting Onset (Solidus), °C 850
1310
Specific Heat Capacity, J/kg-K 340
460
Thermal Conductivity, W/m-K 52
12
Thermal Expansion, µm/m-K 19
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 11
1.7

Otherwise Unclassified Properties

Base Metal Price, % relative 31
60
Density, g/cm3 9.1
8.5
Embodied Carbon, kg CO2/kg material 3.2
9.3
Embodied Energy, MJ/kg 51
130
Embodied Water, L/kg 380
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
200
Resilience: Unit (Modulus of Resilience), kJ/m3 70
190
Stiffness to Weight: Axial, points 5.9
13
Stiffness to Weight: Bending, points 17
23
Strength to Weight: Axial, points 6.1
25
Strength to Weight: Bending, points 8.4
22
Thermal Diffusivity, mm2/s 17
3.1
Thermal Shock Resistance, points 8.1
23

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0 to 0.3
Antimony (Sb), % 0 to 0.8
0
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
18 to 21
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 75 to 79
0 to 0.5
Iron (Fe), % 0 to 0.15
0 to 5.0
Lead (Pb), % 13 to 16
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 1.0
65.4 to 81.7
Phosphorus (P), % 0 to 1.5
0 to 0.020
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.080
0 to 0.015
Tin (Sn), % 6.3 to 7.5
0
Titanium (Ti), % 0
0.2 to 0.6
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 1.0
0