MakeItFrom.com
Menu (ESC)

C93800 Bronze vs. Grade 29 Titanium

C93800 bronze belongs to the copper alloys classification, while grade 29 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C93800 bronze and the bottom bar is grade 29 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 96
110
Elongation at Break, % 9.7
6.8 to 11
Poisson's Ratio 0.35
0.32
Shear Modulus, GPa 35
40
Tensile Strength: Ultimate (UTS), MPa 200
930 to 940
Tensile Strength: Yield (Proof), MPa 120
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 170
410
Maximum Temperature: Mechanical, °C 140
340
Melting Completion (Liquidus), °C 940
1610
Melting Onset (Solidus), °C 850
1560
Specific Heat Capacity, J/kg-K 340
560
Thermal Conductivity, W/m-K 52
7.3
Thermal Expansion, µm/m-K 19
9.3

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 31
36
Density, g/cm3 9.1
4.5
Embodied Carbon, kg CO2/kg material 3.2
39
Embodied Energy, MJ/kg 51
640
Embodied Water, L/kg 380
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17
62 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 70
3420 to 3540
Stiffness to Weight: Axial, points 5.9
13
Stiffness to Weight: Bending, points 17
35
Strength to Weight: Axial, points 6.1
58 to 59
Strength to Weight: Bending, points 8.4
47 to 48
Thermal Diffusivity, mm2/s 17
2.9
Thermal Shock Resistance, points 8.1
68 to 69

Alloy Composition

Aluminum (Al), % 0 to 0.0050
5.5 to 6.5
Antimony (Sb), % 0 to 0.8
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 75 to 79
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.15
0 to 0.25
Lead (Pb), % 13 to 16
0
Nickel (Ni), % 0 to 1.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 1.5
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 6.3 to 7.5
0
Titanium (Ti), % 0
88 to 90.9
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0
0 to 0.4