MakeItFrom.com
Menu (ESC)

C93900 Bronze vs. AWS E385

C93900 bronze belongs to the copper alloys classification, while AWS E385 belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C93900 bronze and the bottom bar is AWS E385.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 95
200
Elongation at Break, % 5.6
34
Poisson's Ratio 0.36
0.28
Shear Modulus, GPa 35
79
Tensile Strength: Ultimate (UTS), MPa 190
580

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Melting Completion (Liquidus), °C 940
1440
Melting Onset (Solidus), °C 850
1390
Specific Heat Capacity, J/kg-K 340
460
Thermal Conductivity, W/m-K 52
14
Thermal Expansion, µm/m-K 19
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 11
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 30
31
Density, g/cm3 9.1
8.1
Embodied Carbon, kg CO2/kg material 3.0
5.8
Embodied Energy, MJ/kg 49
79
Embodied Water, L/kg 360
200

Common Calculations

Stiffness to Weight: Axial, points 5.8
14
Stiffness to Weight: Bending, points 17
24
Strength to Weight: Axial, points 5.9
20
Strength to Weight: Bending, points 8.1
19
Thermal Diffusivity, mm2/s 17
3.6
Thermal Shock Resistance, points 7.5
15

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19.5 to 21.5
Copper (Cu), % 76.5 to 79.5
1.2 to 2.0
Iron (Fe), % 0 to 0.4
41.8 to 50.1
Lead (Pb), % 14 to 18
0
Manganese (Mn), % 0
1.0 to 2.5
Molybdenum (Mo), % 0
4.2 to 5.2
Nickel (Ni), % 0 to 0.8
24 to 26
Phosphorus (P), % 0 to 1.5
0 to 0.030
Silicon (Si), % 0 to 0.0050
0 to 0.9
Sulfur (S), % 0 to 0.080
0 to 0.020
Tin (Sn), % 5.0 to 7.0
0
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 1.1
0