MakeItFrom.com
Menu (ESC)

C93900 Bronze vs. EN 1.3551 Steel

C93900 bronze belongs to the copper alloys classification, while EN 1.3551 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C93900 bronze and the bottom bar is EN 1.3551 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 95
190
Poisson's Ratio 0.36
0.29
Shear Modulus, GPa 35
75
Tensile Strength: Ultimate (UTS), MPa 190
720

Thermal Properties

Latent Heat of Fusion, J/g 170
260
Maximum Temperature: Mechanical, °C 140
530
Melting Completion (Liquidus), °C 940
1490
Melting Onset (Solidus), °C 850
1450
Specific Heat Capacity, J/kg-K 340
460
Thermal Conductivity, W/m-K 52
36
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
8.6
Electrical Conductivity: Equal Weight (Specific), % IACS 11
9.9

Otherwise Unclassified Properties

Base Metal Price, % relative 30
9.0
Density, g/cm3 9.1
7.9
Embodied Carbon, kg CO2/kg material 3.0
4.9
Embodied Energy, MJ/kg 49
71
Embodied Water, L/kg 360
82

Common Calculations

Stiffness to Weight: Axial, points 5.8
14
Stiffness to Weight: Bending, points 17
24
Strength to Weight: Axial, points 5.9
26
Strength to Weight: Bending, points 8.1
23
Thermal Diffusivity, mm2/s 17
9.8
Thermal Shock Resistance, points 7.5
21

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0.77 to 0.85
Chromium (Cr), % 0
3.9 to 4.3
Copper (Cu), % 76.5 to 79.5
0 to 0.3
Iron (Fe), % 0 to 0.4
88.8 to 91.1
Lead (Pb), % 14 to 18
0
Manganese (Mn), % 0
0.15 to 0.35
Molybdenum (Mo), % 0
4.0 to 4.5
Nickel (Ni), % 0 to 0.8
0
Phosphorus (P), % 0 to 1.5
0 to 0.025
Silicon (Si), % 0 to 0.0050
0 to 0.4
Sulfur (S), % 0 to 0.080
0 to 0.015
Tin (Sn), % 5.0 to 7.0
0
Tungsten (W), % 0
0 to 0.25
Vanadium (V), % 0
0.9 to 1.1
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 1.1
0