MakeItFrom.com
Menu (ESC)

C93900 Bronze vs. EN 1.8915 Steel

C93900 bronze belongs to the copper alloys classification, while EN 1.8915 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C93900 bronze and the bottom bar is EN 1.8915 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 95
190
Elongation at Break, % 5.6
19
Poisson's Ratio 0.36
0.29
Shear Modulus, GPa 35
73
Tensile Strength: Ultimate (UTS), MPa 190
640
Tensile Strength: Yield (Proof), MPa 130
490

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 140
400
Melting Completion (Liquidus), °C 940
1460
Melting Onset (Solidus), °C 850
1420
Specific Heat Capacity, J/kg-K 340
470
Thermal Conductivity, W/m-K 52
46
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 30
2.5
Density, g/cm3 9.1
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.7
Embodied Energy, MJ/kg 49
24
Embodied Water, L/kg 360
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.5
110
Resilience: Unit (Modulus of Resilience), kJ/m3 83
640
Stiffness to Weight: Axial, points 5.8
13
Stiffness to Weight: Bending, points 17
24
Strength to Weight: Axial, points 5.9
23
Strength to Weight: Bending, points 8.1
21
Thermal Diffusivity, mm2/s 17
12
Thermal Shock Resistance, points 7.5
19

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0.020 to 0.050
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 76.5 to 79.5
0 to 0.7
Iron (Fe), % 0 to 0.4
95.2 to 98.9
Lead (Pb), % 14 to 18
0
Manganese (Mn), % 0
1.1 to 1.7
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0 to 0.8
0 to 0.8
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.025
Phosphorus (P), % 0 to 1.5
0 to 0.025
Silicon (Si), % 0 to 0.0050
0 to 0.6
Sulfur (S), % 0 to 0.080
0 to 0.0080
Tin (Sn), % 5.0 to 7.0
0
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.2
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 1.1
0