MakeItFrom.com
Menu (ESC)

C93900 Bronze vs. SAE-AISI 1070 Steel

C93900 bronze belongs to the copper alloys classification, while SAE-AISI 1070 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C93900 bronze and the bottom bar is SAE-AISI 1070 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 95
190
Elongation at Break, % 5.6
10 to 13
Poisson's Ratio 0.36
0.29
Shear Modulus, GPa 35
72
Tensile Strength: Ultimate (UTS), MPa 190
640 to 760
Tensile Strength: Yield (Proof), MPa 130
420 to 560

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 140
400
Melting Completion (Liquidus), °C 940
1460
Melting Onset (Solidus), °C 850
1420
Specific Heat Capacity, J/kg-K 340
470
Thermal Conductivity, W/m-K 52
50
Thermal Expansion, µm/m-K 19
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
10
Electrical Conductivity: Equal Weight (Specific), % IACS 11
12

Otherwise Unclassified Properties

Base Metal Price, % relative 30
1.8
Density, g/cm3 9.1
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.4
Embodied Energy, MJ/kg 49
19
Embodied Water, L/kg 360
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.5
59 to 86
Resilience: Unit (Modulus of Resilience), kJ/m3 83
470 to 850
Stiffness to Weight: Axial, points 5.8
13
Stiffness to Weight: Bending, points 17
24
Strength to Weight: Axial, points 5.9
23 to 27
Strength to Weight: Bending, points 8.1
21 to 24
Thermal Diffusivity, mm2/s 17
14
Thermal Shock Resistance, points 7.5
21 to 25

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0.65 to 0.75
Copper (Cu), % 76.5 to 79.5
0
Iron (Fe), % 0 to 0.4
98.3 to 98.8
Lead (Pb), % 14 to 18
0
Manganese (Mn), % 0
0.6 to 0.9
Nickel (Ni), % 0 to 0.8
0
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.080
0 to 0.050
Tin (Sn), % 5.0 to 7.0
0
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 1.1
0