MakeItFrom.com
Menu (ESC)

C93900 Bronze vs. N06002 Nickel

C93900 bronze belongs to the copper alloys classification, while N06002 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C93900 bronze and the bottom bar is N06002 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 95
210
Elongation at Break, % 5.6
41
Poisson's Ratio 0.36
0.28
Shear Modulus, GPa 35
81
Tensile Strength: Ultimate (UTS), MPa 190
760
Tensile Strength: Yield (Proof), MPa 130
310

Thermal Properties

Latent Heat of Fusion, J/g 170
320
Maximum Temperature: Mechanical, °C 140
990
Melting Completion (Liquidus), °C 940
1360
Melting Onset (Solidus), °C 850
1260
Specific Heat Capacity, J/kg-K 340
450
Thermal Conductivity, W/m-K 52
9.9
Thermal Expansion, µm/m-K 19
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 11
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 30
55
Density, g/cm3 9.1
8.5
Embodied Carbon, kg CO2/kg material 3.0
9.3
Embodied Energy, MJ/kg 49
130
Embodied Water, L/kg 360
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.5
250
Resilience: Unit (Modulus of Resilience), kJ/m3 83
230
Stiffness to Weight: Axial, points 5.8
14
Stiffness to Weight: Bending, points 17
23
Strength to Weight: Axial, points 5.9
25
Strength to Weight: Bending, points 8.1
22
Thermal Diffusivity, mm2/s 17
2.6
Thermal Shock Resistance, points 7.5
19

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
20.5 to 23
Cobalt (Co), % 0
0.5 to 2.5
Copper (Cu), % 76.5 to 79.5
0
Iron (Fe), % 0 to 0.4
17 to 20
Lead (Pb), % 14 to 18
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0 to 0.8
42.3 to 54
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.080
0 to 0.030
Tin (Sn), % 5.0 to 7.0
0
Tungsten (W), % 0
0.2 to 1.0
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 1.1
0