MakeItFrom.com
Menu (ESC)

C93900 Bronze vs. S44626 Stainless Steel

C93900 bronze belongs to the copper alloys classification, while S44626 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C93900 bronze and the bottom bar is S44626 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 95
200
Elongation at Break, % 5.6
23
Poisson's Ratio 0.36
0.27
Shear Modulus, GPa 35
80
Tensile Strength: Ultimate (UTS), MPa 190
540
Tensile Strength: Yield (Proof), MPa 130
350

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 140
1100
Melting Completion (Liquidus), °C 940
1440
Melting Onset (Solidus), °C 850
1390
Specific Heat Capacity, J/kg-K 340
480
Thermal Conductivity, W/m-K 52
17
Thermal Expansion, µm/m-K 19
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 30
14
Density, g/cm3 9.1
7.7
Embodied Carbon, kg CO2/kg material 3.0
2.9
Embodied Energy, MJ/kg 49
42
Embodied Water, L/kg 360
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.5
110
Resilience: Unit (Modulus of Resilience), kJ/m3 83
300
Stiffness to Weight: Axial, points 5.8
15
Stiffness to Weight: Bending, points 17
26
Strength to Weight: Axial, points 5.9
19
Strength to Weight: Bending, points 8.1
19
Thermal Diffusivity, mm2/s 17
4.6
Thermal Shock Resistance, points 7.5
18

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.5
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
25 to 27
Copper (Cu), % 76.5 to 79.5
0 to 0.2
Iron (Fe), % 0 to 0.4
68.1 to 74.1
Lead (Pb), % 14 to 18
0
Manganese (Mn), % 0
0 to 0.75
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0 to 0.8
0 to 0.5
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 0.75
Sulfur (S), % 0 to 0.080
0 to 0.020
Tin (Sn), % 5.0 to 7.0
0
Titanium (Ti), % 0
0.2 to 1.0
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 1.1
0