MakeItFrom.com
Menu (ESC)

C94300 Bronze vs. ACI-ASTM CF8 Steel

C94300 bronze belongs to the copper alloys classification, while ACI-ASTM CF8 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C94300 bronze and the bottom bar is ACI-ASTM CF8 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 87
200
Elongation at Break, % 9.7
55
Poisson's Ratio 0.36
0.28
Shear Modulus, GPa 32
77
Tensile Strength: Ultimate (UTS), MPa 180
540
Tensile Strength: Yield (Proof), MPa 120
260

Thermal Properties

Latent Heat of Fusion, J/g 150
300
Maximum Temperature: Mechanical, °C 110
980
Melting Completion (Liquidus), °C 820
1420
Melting Onset (Solidus), °C 760
1430
Specific Heat Capacity, J/kg-K 320
480
Thermal Conductivity, W/m-K 63
16
Thermal Expansion, µm/m-K 20
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 28
16
Density, g/cm3 9.3
7.8
Embodied Carbon, kg CO2/kg material 2.9
3.1
Embodied Energy, MJ/kg 47
44
Embodied Water, L/kg 370
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15
240
Resilience: Unit (Modulus of Resilience), kJ/m3 77
160
Stiffness to Weight: Axial, points 5.2
14
Stiffness to Weight: Bending, points 16
25
Strength to Weight: Axial, points 5.2
19
Strength to Weight: Bending, points 7.4
19
Thermal Diffusivity, mm2/s 21
4.3
Thermal Shock Resistance, points 7.1
13

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.8
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 67 to 72
0
Iron (Fe), % 0 to 0.15
63.8 to 74
Lead (Pb), % 23 to 27
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 1.0
8.0 to 11
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 2.0
Sulfur (S), % 0 to 0.080
0 to 0.040
Tin (Sn), % 4.5 to 6.0
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 1.0
0