MakeItFrom.com
Menu (ESC)

C94300 Bronze vs. ASTM A372 Grade H Steel

C94300 bronze belongs to the copper alloys classification, while ASTM A372 grade H steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C94300 bronze and the bottom bar is ASTM A372 grade H steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 87
190
Elongation at Break, % 9.7
20 to 22
Poisson's Ratio 0.36
0.29
Shear Modulus, GPa 32
73
Tensile Strength: Ultimate (UTS), MPa 180
650 to 910
Tensile Strength: Yield (Proof), MPa 120
430 to 550

Thermal Properties

Latent Heat of Fusion, J/g 150
250
Maximum Temperature: Mechanical, °C 110
410
Melting Completion (Liquidus), °C 820
1460
Melting Onset (Solidus), °C 760
1420
Specific Heat Capacity, J/kg-K 320
470
Thermal Conductivity, W/m-K 63
45
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 28
2.3
Density, g/cm3 9.3
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.5
Embodied Energy, MJ/kg 47
20
Embodied Water, L/kg 370
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15
130 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 77
500 to 810
Stiffness to Weight: Axial, points 5.2
13
Stiffness to Weight: Bending, points 16
24
Strength to Weight: Axial, points 5.2
23 to 32
Strength to Weight: Bending, points 7.4
21 to 27
Thermal Diffusivity, mm2/s 21
12
Thermal Shock Resistance, points 7.1
19 to 27

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.8
0
Carbon (C), % 0
0.3 to 0.4
Chromium (Cr), % 0
0.4 to 0.65
Copper (Cu), % 67 to 72
0
Iron (Fe), % 0 to 0.15
97.3 to 98.3
Lead (Pb), % 23 to 27
0
Manganese (Mn), % 0
0.75 to 1.1
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0 to 1.5
0 to 0.015
Silicon (Si), % 0 to 0.0050
0.15 to 0.35
Sulfur (S), % 0 to 0.080
0 to 0.010
Tin (Sn), % 4.5 to 6.0
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 1.0
0