MakeItFrom.com
Menu (ESC)

C94300 Bronze vs. EN 1.4482 Stainless Steel

C94300 bronze belongs to the copper alloys classification, while EN 1.4482 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C94300 bronze and the bottom bar is EN 1.4482 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 87
200
Elongation at Break, % 9.7
34
Poisson's Ratio 0.36
0.28
Shear Modulus, GPa 32
78
Tensile Strength: Ultimate (UTS), MPa 180
770 to 800
Tensile Strength: Yield (Proof), MPa 120
530 to 570

Thermal Properties

Latent Heat of Fusion, J/g 150
290
Maximum Temperature: Mechanical, °C 110
980
Melting Completion (Liquidus), °C 820
1420
Melting Onset (Solidus), °C 760
1370
Specific Heat Capacity, J/kg-K 320
480
Thermal Conductivity, W/m-K 63
15
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 28
12
Density, g/cm3 9.3
7.7
Embodied Carbon, kg CO2/kg material 2.9
2.7
Embodied Energy, MJ/kg 47
38
Embodied Water, L/kg 370
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15
230 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 77
690 to 820
Stiffness to Weight: Axial, points 5.2
14
Stiffness to Weight: Bending, points 16
25
Strength to Weight: Axial, points 5.2
28 to 29
Strength to Weight: Bending, points 7.4
24 to 25
Thermal Diffusivity, mm2/s 21
4.0
Thermal Shock Resistance, points 7.1
21 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19.5 to 21.5
Copper (Cu), % 67 to 72
0 to 1.0
Iron (Fe), % 0 to 0.15
66.1 to 74.9
Lead (Pb), % 23 to 27
0
Manganese (Mn), % 0
4.0 to 6.0
Molybdenum (Mo), % 0
0.1 to 0.6
Nickel (Ni), % 0 to 1.0
1.5 to 3.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0 to 1.5
0 to 0.035
Silicon (Si), % 0 to 0.0050
0 to 1.0
Sulfur (S), % 0 to 0.080
0 to 0.030
Tin (Sn), % 4.5 to 6.0
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 1.0
0