MakeItFrom.com
Menu (ESC)

C94300 Bronze vs. EN 1.6553 Steel

C94300 bronze belongs to the copper alloys classification, while EN 1.6553 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C94300 bronze and the bottom bar is EN 1.6553 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 87
190
Elongation at Break, % 9.7
19 to 21
Poisson's Ratio 0.36
0.29
Shear Modulus, GPa 32
73
Tensile Strength: Ultimate (UTS), MPa 180
710 to 800
Tensile Strength: Yield (Proof), MPa 120
470 to 670

Thermal Properties

Latent Heat of Fusion, J/g 150
250
Maximum Temperature: Mechanical, °C 110
420
Melting Completion (Liquidus), °C 820
1460
Melting Onset (Solidus), °C 760
1420
Specific Heat Capacity, J/kg-K 320
470
Thermal Conductivity, W/m-K 63
39
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 28
2.7
Density, g/cm3 9.3
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.6
Embodied Energy, MJ/kg 47
21
Embodied Water, L/kg 370
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15
130 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 77
600 to 1190
Stiffness to Weight: Axial, points 5.2
13
Stiffness to Weight: Bending, points 16
24
Strength to Weight: Axial, points 5.2
25 to 28
Strength to Weight: Bending, points 7.4
23 to 24
Thermal Diffusivity, mm2/s 21
10
Thermal Shock Resistance, points 7.1
21 to 23

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.8
0
Carbon (C), % 0
0.23 to 0.28
Chromium (Cr), % 0
0.4 to 0.8
Copper (Cu), % 67 to 72
0 to 0.3
Iron (Fe), % 0 to 0.15
95.6 to 98.2
Lead (Pb), % 23 to 27
0
Manganese (Mn), % 0
0.6 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.3
Nickel (Ni), % 0 to 1.0
0.4 to 0.8
Phosphorus (P), % 0 to 1.5
0 to 0.030
Silicon (Si), % 0 to 0.0050
0 to 0.8
Sulfur (S), % 0 to 0.080
0 to 0.025
Tin (Sn), % 4.5 to 6.0
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 1.0
0