MakeItFrom.com
Menu (ESC)

C94300 Bronze vs. N07752 Nickel

C94300 bronze belongs to the copper alloys classification, while N07752 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C94300 bronze and the bottom bar is N07752 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 87
190
Elongation at Break, % 9.7
22
Poisson's Ratio 0.36
0.29
Shear Modulus, GPa 32
73
Tensile Strength: Ultimate (UTS), MPa 180
1120
Tensile Strength: Yield (Proof), MPa 120
740

Thermal Properties

Latent Heat of Fusion, J/g 150
310
Maximum Temperature: Mechanical, °C 110
960
Melting Completion (Liquidus), °C 820
1380
Melting Onset (Solidus), °C 760
1330
Specific Heat Capacity, J/kg-K 320
460
Thermal Conductivity, W/m-K 63
13
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 28
60
Density, g/cm3 9.3
8.4
Embodied Carbon, kg CO2/kg material 2.9
10
Embodied Energy, MJ/kg 47
150
Embodied Water, L/kg 370
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15
220
Resilience: Unit (Modulus of Resilience), kJ/m3 77
1450
Stiffness to Weight: Axial, points 5.2
13
Stiffness to Weight: Bending, points 16
23
Strength to Weight: Axial, points 5.2
37
Strength to Weight: Bending, points 7.4
29
Thermal Diffusivity, mm2/s 21
3.2
Thermal Shock Resistance, points 7.1
34

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0.4 to 1.0
Antimony (Sb), % 0 to 0.8
0
Boron (B), % 0
0 to 0.0070
Carbon (C), % 0
0.020 to 0.060
Chromium (Cr), % 0
14.5 to 17
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 67 to 72
0 to 0.5
Iron (Fe), % 0 to 0.15
5.0 to 9.0
Lead (Pb), % 23 to 27
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 1.0
70 to 77.1
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0 to 1.5
0 to 0.0080
Silicon (Si), % 0 to 0.0050
0 to 0.5
Sulfur (S), % 0 to 0.080
0 to 0.0030
Tin (Sn), % 4.5 to 6.0
0
Titanium (Ti), % 0
2.3 to 2.8
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.8
0 to 0.050
Residuals, % 0 to 1.0
0