MakeItFrom.com
Menu (ESC)

C94300 Bronze vs. N08024 Nickel

C94300 bronze belongs to the copper alloys classification, while N08024 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C94300 bronze and the bottom bar is N08024 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 87
200
Elongation at Break, % 9.7
34
Poisson's Ratio 0.36
0.28
Shear Modulus, GPa 32
79
Tensile Strength: Ultimate (UTS), MPa 180
620
Tensile Strength: Yield (Proof), MPa 120
270

Thermal Properties

Latent Heat of Fusion, J/g 150
310
Maximum Temperature: Mechanical, °C 110
990
Melting Completion (Liquidus), °C 820
1430
Melting Onset (Solidus), °C 760
1380
Specific Heat Capacity, J/kg-K 320
460
Thermal Conductivity, W/m-K 63
12
Thermal Expansion, µm/m-K 20
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 28
41
Density, g/cm3 9.3
8.2
Embodied Carbon, kg CO2/kg material 2.9
7.2
Embodied Energy, MJ/kg 47
99
Embodied Water, L/kg 370
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15
170
Resilience: Unit (Modulus of Resilience), kJ/m3 77
180
Stiffness to Weight: Axial, points 5.2
14
Stiffness to Weight: Bending, points 16
24
Strength to Weight: Axial, points 5.2
21
Strength to Weight: Bending, points 7.4
20
Thermal Diffusivity, mm2/s 21
3.2
Thermal Shock Resistance, points 7.1
15

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22.5 to 25
Copper (Cu), % 67 to 72
0.5 to 1.5
Iron (Fe), % 0 to 0.15
26.6 to 38.4
Lead (Pb), % 23 to 27
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 5.0
Nickel (Ni), % 0 to 1.0
35 to 40
Niobium (Nb), % 0
0.15 to 0.35
Phosphorus (P), % 0 to 1.5
0 to 0.035
Silicon (Si), % 0 to 0.0050
0 to 0.5
Sulfur (S), % 0 to 0.080
0 to 0.035
Tin (Sn), % 4.5 to 6.0
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 1.0
0