MakeItFrom.com
Menu (ESC)

C94400 Bronze vs. Grade 29 Titanium

C94400 bronze belongs to the copper alloys classification, while grade 29 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C94400 bronze and the bottom bar is grade 29 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 18
6.8 to 11
Poisson's Ratio 0.35
0.32
Shear Modulus, GPa 37
40
Tensile Strength: Ultimate (UTS), MPa 220
930 to 940
Tensile Strength: Yield (Proof), MPa 110
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 180
410
Maximum Temperature: Mechanical, °C 150
340
Melting Completion (Liquidus), °C 940
1610
Melting Onset (Solidus), °C 790
1560
Specific Heat Capacity, J/kg-K 350
560
Thermal Conductivity, W/m-K 52
7.3
Thermal Expansion, µm/m-K 19
9.3

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.9
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 32
36
Density, g/cm3 9.1
4.5
Embodied Carbon, kg CO2/kg material 3.4
39
Embodied Energy, MJ/kg 54
640
Embodied Water, L/kg 390
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33
62 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 60
3420 to 3540
Stiffness to Weight: Axial, points 6.1
13
Stiffness to Weight: Bending, points 17
35
Strength to Weight: Axial, points 6.8
58 to 59
Strength to Weight: Bending, points 9.0
47 to 48
Thermal Diffusivity, mm2/s 17
2.9
Thermal Shock Resistance, points 8.3
68 to 69

Alloy Composition

Aluminum (Al), % 0 to 0.0050
5.5 to 6.5
Antimony (Sb), % 0 to 0.8
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 76.1 to 84
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.15
0 to 0.25
Lead (Pb), % 9.0 to 12
0
Nickel (Ni), % 0 to 1.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.050
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0 to 0.080
0
Tin (Sn), % 7.0 to 9.0
0
Titanium (Ti), % 0
88 to 90.9
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0
0 to 0.4